Jawaban dari "JANGAN DIJAWAB ASALAN dan harus ada cara jika tak bisa harus diam okay   (1995   Russian   Math   Ol..."

Jawaban dari "JANGAN DIJAWAB ASALAN dan harus ada cara jika tak bisa harus diam okay   (1995   Russian   Math   Ol..."

Jika kamu mau melihat jawaban mengenai soal

JANGAN DIJAWAB ASALAN dan harus ada cara

jika tak bisa harus diam okay

 

(1995   Russian   Math   Olympiad)    Is it p ossible to nd   three  quadratic

 

   p olynomials   f (x ) ; g (x ) ; h (x ) such that the equation f (g (h (x ))) = 0 has

 

   the  eight ro ots 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8?

ente berada di halaman yang benar. Kami mempunyai 2 jawaban dari

JANGAN DIJAWAB ASALAN dan harus ada cara

jika tak bisa harus diam okay

 

(1995   Russian   Math   Olympiad)    Is it p ossible to nd   three  quadratic

 

   p olynomials   f (x ) ; g (x ) ; h (x ) such that the equation f (g (h (x ))) = 0 has

 

   the  eight ro ots 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8?

. Silakan lihat jawaban selanjutnya di bawah ini:

Jawaban: #1: Solution   . Supp  ose there  are such  f ; g ; h: Then h (1); h (2); : : : ; h (8) will      b e the   ro ots of the  4-th  degree   p olynomial   f (g (x )) : Since h (a ) =      h (b) ; a =6 b if and only  if a; b are symmetric    with  resp ect to the  axis      of  the  parab  ola, it follows  that   h (1) =   h (8); h (2) =  h (7); h (3) =      h (6); h (4) =  h (5) and  the  parab  ola y  =  h (x ) is symmetric   with   re-      sp ect to  x =  9=2 : Also, we  have   either h (1) <  h (2) <  h (3) <  h (4) or      h (1) >  h (2) > h (3) >  h (4):            Now  g (h (1)); g (h (2)); g (h (3)); g (h (4)) are the ro ots of the quadratic      p olynomial   f (x ) ; so g (h (1)) = g (h (4)) and g (h (2)) = g (h (3)); which      implies  h (1) + h (4) = h (2) + h (3): For h (x ) = Ax2 + B x + C ; this would      force  A =  0 ; a contradiction.


Jawaban: #2: Solution   . Supp  ose there  are such  f ; g ; h: Then h (1); h (2); : : : ; h (8) will      b e the   ro ots of the  4-th  degree   p olynomial   f (g (x )) : Since h (a ) =      h (b) ; a =6 b if and only  if a; b are symmetric    with  resp ect to the  axis      of  the  parab  ola, it follows  that   h (1) =   h (8); h (2) =  h (7); h (3) =      h (6); h (4) =  h (5) and  the  parab  ola y  =  h (x ) is symmetric   with   re-      sp ect to  x =  9=2 : Also, we  have   either h (1) <  h (2) <  h (3) <  h (4) or      h (1) >  h (2) > h (3) >  h (4):            Now  g (h (1)); g (h (2)); g (h (3)); g (h (4)) are the ro ots of the quadratic      p olynomial   f (x ) ; so g (h (1)) = g (h (4)) and g (h (2)) = g (h (3)); which      implies  h (1) + h (4) = h (2) + h (3): For h (x ) = Ax2 + B x + C ; this would      force  A =  0 ; a contradiction.